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1. INTRODUCTION AND BACKGROUND

1.1 Introduction

Continued increase in the complexity and use of computer
systems in a wide variety of applications, especially during the
last decade, has necessitated a greater emphasis on the development

of cost-effective and reliable software. The importance of soft-

- ware has been further enhanced by the fact that the ratio of soft-

ware to hardware costs continues to grow as technological advances
keep reducing the hardware gost. This has led to the evolution of
a new discipline called software engineering (Reference 6). This
discipline is still in its infancy and has been described as the
practical application of scientific knowledge to produce software
in a way that is cost-effective and relizble,

Thé performance of a software system is dependent on the
tools and technigques used during its development and operation.
An important performance criterion is the nature and frequency of
software failures. A failure is said to occur when a fault, a
specific manifestation of an error, in the program is evoked by
some input data resulting in the computer program not correctly
computing the required function. A software error is a conceptual,
syntactical, or clerical discrepancy which results in one or more
faults in the software. It should be noted that these definitions
are controversial and not uniformly accepted. To be consistent

with the existing literature, in this report the terms error and

failure are used interchangeably, except where indicated otherwise.
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Several empirical studies of software failure phenomena have
been undertaken in recent years with the objective of improving
software performance. Such studies can be classified into one (or
both) of two categories., 1In the first category the emphasis is
on the analysis of software error data collected from small or
large projects (References 17, 22, 43, 56, 67, 70), during develop-
ment and/or operational phases. Studies in the second category
are primarily aimed at the development of analytical models
(References 7, 14, 24, 25, 26, 28, 31, 36, 46, 58, 60, 61, 66, 69,
71).

A number of software reliability models have been proposed
and investigated during the last seven years to describe the
stochastic behavior of the software failure process and to esti-
mate the number of software errors remaining in the system. We
classify these models into two major categories., The first one
emphasizes the stochastic nature of software failures, while the
second approach uses combinatorial analysis to provide measures
of software reliability.

The basis of the first approach is the reliability theory
developed for hardware systems. Since the error detection rate
changes during the software development cycle, the models have
been modified to incorporate this feature of the software failure
phenomenon. The time between failures is usually assumed to be
exponential with a parameter that changes with the number of remain-
ing errors in this class of models (References 26, 31, 46, 58, 61).

Some work has been done using a Bayesian approach (References 23,

36) in which the time to next failure is taken to be dependent on
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the previous failure history. Software reliability has also been
modelled based on the number of errors found during the debugging
phase (Reference 34). Also of interest in this category are the
models for software availability (References 49, 50, 68).

As mentioned above, in the second approach software reli-
ability is measuréd using combinatorial analysis which includes

capture-recapture sampling (or error seeding) models and input

' data domain models. The objective of capture-recapture sampling

is to determine the number of remaining errors in a computer pro-
gram by introducing (or seceding) errors and then using classical
statistical techniques for estimation. Computer systems are
initialized and exercised by a controlled input data set and the
reliability of the program is estimated by running the program for
all such possible input data sets. This is the input data domain
approach which has serious limitations from a practical viewpoint.

A classification of the above models is shown in Figure 1l.1.

Each of these categories is described in more detail in Appendix A.
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1.2 Purpose and Outline of the Report

In this report our objective is to develop a parsimonious
model whose parameters have a physical interpretation, and which
can be used to predict various quantitative measuree for software
performance assessment. Also of interecst is the applicability of
the model over a broad class of projects. Further, it should be

possible to estimate the parameters of the model from available

failure data which could be given as either the number of failures

in specified time intervals or as times between software failures.
With this objective, we develop and investigate a non-
homogeneous Poisson process (NHPP) (Reference 9) model with a time
dependent error detection rate for the software failure phenomenon.
By studying the behavior of the counting process, [N(t), t>0}, the
number of failures by time t, it is showvn in Section 2 that N(t)
can be well described by a non-homogeneous Poisson process (NHPP)
with a two parameter exponentially decaying error detection rate.
NHPP has been used by many researchers to describe random
phenomena in various applications (References 13, 15, 16). Some
such applications are the occurrences of coal mining disasters
(Reference 39); equipment failures (References 16, 32, 51); trans-
actions in a data-base system (Reference 33), and software error
counts over a series of time intervals (Reference 60). Various
forms of the intensity function for the NHPP used in actual appli-
cations are the exponential polynomial rate function (Reference 23),
a log-linear rate function (Reference 1l1l) and a Weibull rate func-

tion (References 13, 15, 44).




Several measures for software performance assessment, such
as the number of errors remaining in the system, distribution of
time to next failure, and software reliability are proposed in
Section 3. Based on the NHPP model, expressions are then derived

for obtaining the estimates and confidence limits for these per-
formance measures.

Two mcthods are described in Section 4 for estimating the
parameters of the model from.available failure data. The first
one is for the case when data is given in the form of number of
failures in given time intervals. The time intervals can be of
egqual or unequal lengths. The second method is used when times
between software failures are given.

In Section 5, a method for testing the goodness-of-fit is
developed based on the Kolmogorov-Smirnov test. Expressions for
performing this test are also derxrived.

A general methodology for analyzing software failure data is
presented in Section 6. It gives a step by step procedure of analysis,
starting from raw data to the computation of useable performance
measures. This methodology is employed in Sections 7 and 8 to
give a detailed analysis of failure data from two software systems.
The first one (Section 7) is a large command and control s}stem
while the second (Section 8) is a relatively small Naval Tactical
Data System (NTDS). A comparison of NTDS data analysis using the
NHPP and the De-Eutrophication process models is presented in
Section 9. Some concluding remarks, limitations and advantages of

the NHPP model are summarized in Section 10.

PSRN PP I




2. MODEL DEVELOPMENT

A software system in use is subject to failures caused by

errors present in the system. The errors are encountered when a

A bt i i ok Ry RSN ¢

sequence of instructions is executed which, in turn, depends on the

input data set. In this section we develop a model to describe

this failure occurrence phenomenon.

2.1 Deterministic Analysis of Software Failure Process

It is useful to first make a simpler analysis by ignoring
the statistical fluctuations in the number of software failures
before analyzing the failure phenomenon as a stochastic process
(Reference 12). Let n(t) denote the cumulative number of softwarec
failures detected by time t . Assume that n(t) is large enough
so that it can be expressed as a continuous function of t. Since
the number of errors in a system is a finite value, n(t) is a

bounded non-decreasing function of t with
n(0) =0 and n(=x) = a. (2.1)

For purposes of modeling we assume that the usage of the system is
basically similar over time. Then the number of failures in

(t,t+4t) is proportional to the number of undetected errors at t,

i.e.,

n(t+ot) -=n(t) = b{a-n(t)]at, (2.2)

where b is a proportionality constant.

A graphical representation of the above description is pro-

vided in rigure 2.1.




n(®)-n(t)
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FIGURE 2. A GRAPHICAL REPRESENTATION OF
THE DETERMINISTIC MODEL FOR SOFT-
WARE FAILURES
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Now, from Equation (2.2) we get the differential equation

n'(t) = ab~-dbn' (t) . (2.3)

Taking the Laplace transform (References 1, 10) of Equation (2.3)

under the conditions of Ejuation (2.1), we have

sn(s) = ab-bn(s) ,

or n(s) = f;%. (2.4)
where
~ ® st
n(s) =S e St . an(e) . (2.5)
0

The solution of Equation (2.3) is thus obtained by inverting
Equation (2.4) and is given by

bt

n(t) = a(l-e °°). (2.6)

Under the assumptions discussed above, Equation (2.6) is the
deterministic model of the software failure process. For given a
and b, we can easily compute the number of failures to be encountered
by some time t so that the failure phenomenon can be described with

certainty. It should be noted, however, that the actual failure

pheromenon is not deterministic.
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2.2 Stochastic Analysis of Software Failure Process

In an actual usage the softwarc system is subjected to random
inputs causing the failures to occur at random times, i.e., the
failure phenomenon is stochastic (non-deterministic). Therefore,

a realistic description of the failure process must incorporate
this randomness.

Let (N(t), t>0) be a counting process (References 52, 54, 62)
representing the cumulative number of failures by time t . (Note that
N(t) is a random variable while n(t) above was taken to be deterministic.’
Assuming that each failure is caused by one error, N(t) also recpre-
sents the cumulative number of errors detected by time t. It should
be pointed out that a detected error may not be removed and as a
result may cause additional failure(s) at a later stage. For the
N(t) process, such recurrences are counted as new events.

Let m(t) be the mean value function of the N(t) process,

i.e.,
m(t) = E[N(t)] . (2.7)

Since m(t) represents the expected number of software failures
or detected errors by time t, it is a non-decrcasing function of
t. If we assume that there will be a finite number of errors to
be detected in an infinite amount of time, m(t) has the following
boundary conditions:

0, t=0

m(t) = (2.8)
a, t=ew

where a<® and represents the expected number of software errors

1C
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to be eventually detected. Furthermore, it is assumed that for
small At the expected number of software failures during (t,t+at)
is proportional to the expected number of software errors undetected

by time t, i.e.,
m(t+4t) =m(t) = b{a-m(t)]}at (2.9)

where b is a constant of proportionality. Solving the differential
equation obtained from Equation (2.9) under the boundary conditions

of Equation (2.8), we get

bt

m(t) = a(l-e ~7) . (2.10)

This equation specifies the mean value function for the underlying
software failure counting process N(t) . The intensity function,
obtained by taking the derivative of m(t) , represents the error

detection rate at time t and is given by

A(t) = m'(t) = abe Pt (2.11)

We now study the probabilistic behavior of the N(t) process
by using m(t) and A(t). Since there are no failures at t=0,
we have N(0)=0. It is also reasonable to assume that the number
of software failures during non-overlapping time intervals are
independent. In other words, for any finite collection of times
t1<t2<... <tn, the n random variables N(tl) ' {N(tz)-N(tl)],...,

[N(tn)—N(tn_l)] are statistically independent. This implies that

the counting process (N(t), t>0} has independent increments.

O T
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We assign the probabilities on the increments of the N(t)

process as follows,

0 with probability 1-A(t)aAt+o(Aat)

1 with probability A(t)at+o(bt)

N(t+At) - N(t) =
2 with probability o(aAt)

M-'O as At=->0.,

At

The underlying N(t) process satisfying conditions of Equation (2.12)
is now a NHPP with mean value function m(t) and intensity function
A(t) as given in Equations (2.10) and (2.11), respectively (References

18, 19). Hence the distribution of N(t) is given by

y
P{N(t)=y) = Jﬂ;t)—}— e m(t) y=0,1,2,... . (2.13)

Under the assumptions discussed above, the stochastic behavior of
the software failure phenomenon can be completely described by
Equation (2.13). It should be pointed out that Equation (2.9)

implies that the ratio

Number of errors detected during (t,t+At) = b
(Number of errors undetected by t)at
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is constant at any time t. Therefore, b can be interpreted as
the error detection rate per error.

Equations (2.10) and (2.13) constitute the basic software

failure model under study in this report.,

13
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3. MODEIS FOR SOFTWARE PERFORMANCE ASSESSMENT

The model developed in Section 2 is a description of the
failure phenomenon. In order to use this model to predict soft-
ware performance, we generally need expressions for quantitative
measures such as the number of failures by some prespecified time,
the number of errors remaining in the software at a future time,
and software reliability during a mission. In this section we

develop models that can be employed to estimate such quantities.

3.1 Number of Software Errors Detected by t i
For given a and b the distribution of N(t), the cumula-
tive number of software failures detected by-time t, is obtained

from Equations (2.10) and (2.13) as

_ bty __,_.-bt 9
p(N(t)=y)} = L2 & UZ gmall=e 77 v 0,1,2,...  (3.1) .
In other words, N(t) has a Poisson distribution with mean 3
m(t) = E[N(t)] = a(l-e %) . (3.2) §
1
Note that *
E
a¥ -a |
P{N(=)=y} =yre y=0,1,2,.... (3.3)

I.e., the distribution of N(«) , the total number of failures
encountered or errors detected if the system is used indefinitely,
is also a Poisson distribution with mean 'a'. This result is con-
sistent with theoretical studies which indicate that the Poisson

process is the limiting distribution of many phenomena similar to

the software error occurrence phenomenon (References 41, 62).




3.2 Number of Remaining Errors and Related Results

We have been considering the number of failures encountered
by time t, N(t). Since many of the performance measures depend
on the number of érrors remaining in the system, we now consider
this phenomenon.

Let N(t) be the number of errors remaining in the system

at time t, i.e.,
N(t) = N(=) =N(t) ., (3.4)
The expectation of N(t) is given by
bt

E[N(t)] = ae” " ". (3.5)

The conditional distribution of N(t), given N(t) =y, is

obtained as follows:

P{N(t)=xIN(t)=y} = P[N(=) =y+x)

ay+x

(y+x)!

e 2 x=0,1,2,... . (3.6)

This conditional distribution is important for deciding whether
the software system under development can be released or not. The
decision should be made based on the number of errors remaining

in the software because this quantity plays an important role in
software reliability assessment. Suppose that the decision-maker
conducts an experiment and finds y software errors by time t.

Then, a decision might be to

Accept if N(t) < n,

and
Reject if N(t) > n,

15
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where n, is some specified number. For this decision rule, the

probability that the software system is accepted for a given number

of failures y by time t is
P{Accept} = P[N(t) _<_n0|N(t) =y}

and, using Equation (3.6), becomes

0
y+i _
P{Accept) = z T)a;:;)—r e 2. (3.7)
i=0

The conditional expectation of N(t), given N(t) =y, is !;

givea by

il

E[N(t) IN(t)=y] E[N(2)=N(t) IN(t)=y]

E{N(=)-y]

or E[N(t) IN(t)=y] a-y. (3.8)

Therefore, the expected number of errors remaining in the software
system at time t, given that y errors have been detected during
the testing period t, is simply the expected number of failures
to be encountered during [0,») less the number of errors detected
during the period [0O,t].

As we can see, the parameter 'a' plays a crucial role in ‘“his

study.

16
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3.3 Software Reliability

Let a seguence of random variables {Xi ,1=1,2,...) denote
a sequence of times between scftware failures asscciated with the
N(t) process. Then Xi denotes the time between the (i~1l)st and

the ith failures. We also define

v el S

n
S = z X. ., n=1121000 (3-9)

1 which represents the time to the nth failure. Let Ql(x) be the

Cumulative Distribution Function (cdf) of Xy i.e..

ixl(x) = P(X, <X) . (3.10)

Note that the event [Xl >x} implies that there are no failures
during (0,x], i.e., the event {N(x)=0}. Then using Equation (3.1) the
reliability function associated with the first failure time 1s

given by
Rxl(X) = P(X1>x) = P(N(x)=0}

—a(l-e"P%) l

or RX (x) = e . (3.11)
1

Now, the cdf of Xl can be written as

8. (x) 1~ (x)
X rs‘1

-bx
or b (x) = 1-e-2(l-e )

1

. (3.12)

S A o R R BT T AT YO

The Probability Density Function (pdf) is defined as




‘le(x) = ax ¥x. (®)

1
!
so that
~bx
@, (x) = abe PXTall=e ) (3.13)
X
1
Next consider the conditional probability distribution, v 1% (x1s),
2™

of {lele. The event [x23>x|xl==s} implies [(no failures in (s,s+x]].
Then the conditional reliability function of the second failure,

given that the first failure occurs at time s, is given by

mn

Pﬁ(?‘lxl(x's) = P[X2 >xlxl=s)

P{no failures in (s,s+x]}

P{N(s+x)-N(s)=0}

- e-[m(s+x)-m(s)]

_ e_a[e—bs_e-b(s+x)].

(3.14)
From Equation (3.14), we obtain |
4 (x1s) = 1-FR (xIs) !
X2|Xl 'X2|X1
-bs -b (s+x)
= 1-c"2le T -e ] (3.15)
and
Ox.1x, (X18) = Ei' ' ix, (x18) !
2’7 271 |
_ ea{a~PS _ _~b(s+x) i
= ape P (s+x) -afe e b, (3.16) |
t

Combining Eguations (3.12) and (3.16), we get the joint density

of xl and kz as




oo g YT

® (x,,%,) = @ (%, 1x,)0, (%)
Xl.X2 1’72 X2IXl 271 Xl 1l

--bx1

=b (%x,+%,))
(abe ) (abe 172

~bx

-bx =b(x,+x%,)
e-a(l-e 1 1772

l)e—a[e ~-e

X

~b(x.+x.)
~bx, =b(x,+x,) 1 72
_ 2.2 1l 1772’ -a{l-e

or wxl'xz(xl.xz) = abe e e

]. (3.17)

Making the transformation S,=%, sz=xl+x2, the joint density of

S and S is

1 2

~bs
~bs ~bs 2
® (s.,5,) = a’b’e Lle 2ga(lme 7)) (3.18)

In general, it can be shown that the conditional reliability
function Of‘xk' given Sk_1==s, is given by

~bs ~b (s+x)
(xis) = e 2le  -e ), (3.19)
kalsk_1

19
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3.4 conditional Distribution of Xklsk_l

The conditional cdf and pdf are obtained from Equation (3.19)

by recalling that R(x)=1-4% (x) and ¢(x) =£—c-<1> (x) . Thus, we have

_ —bs__ -b(s+x)
by g (X18) = 1-e"2le e } (3.20)
S |
and
- _ ~bs ~b (s+x)
Y% |s (x18) = abe b(s+x)e afe - € }, (3.21)
Xy 15k-1
respectively.

As can be seen from the above equations, the time to the next
failure depends on the time when the last failure occurs. It should
be noted that the distributions of times between failures are

improper, i.e.,

=bs

(ois) = 1= 3¢  <1. (3.22)

@
Xy [Sk=1

This is due to the fact that the event {no failures in (0,«]} is
allowed in our model. Hence, the expectations of these quantities
do not exist. This type of behavior does not cause any theoretical

problems in analysis.

20




3.5 Joint Density of waiting Times

As defined above, {Xk +k=1,2,...} denotes the sequence of

times between software failures. Then

n
S = ¥ X., n=1,2,...

is called the waiting time to the nth software failure. This quantity
is quite important for estimation of parameters a and b and, hence,
we obtain the distribution of {Sl.Sz,...,Sn}. The distribution

is obtained by using an approach similar to that used for getting

Equation (3.17). The result is summarized in the following theorem.

Theorem. The joint probability density of Sl,Sz,....,Sn is given
by

= n . i . 2
¢Sl'...‘sn(sl,...,sn)-(ab) e e (3.23)

where sl,sz,...,sn denote the realizations of Sl'SZ""’Sn'
respectively.

The density can also be written as

-m(sn) n
Wsll_..'sn(sl....,sn) = e kzlx(sk) (3.24)
d . -bsk
where X(sk)==a§;{m(sk)} and m(s, ) =a(l-e ). For a proof of

this theorem, see References 1l and 15.

Equation (3.23) will be used in Section 4 to cctimate a

and b based on observed data s= (sl,...,sn) .




X 3.6 Joint Counting Probability
ﬂ The property of independent increments, along with Equations
‘; (2.8) and (2.12) of Section 2, provides a complete statistical
z characterization for NHPP so that the joint counting probability
can be determined for any collection of times O<ty <ty <een <t
! That is, with t0=0 ’ y0=0 .
PIN(t)) = vy /N(ty) = ¥pu -oeu N(t ) = y_]
: |
B n f
= 121 P{N(ti) -N(ti"'l) =Yi"Yi_l}
Y=Y, _
nom(tg) -mt; 1 T amie)
= 1 e . (3.25)
i=1 (Yi_yi-l)‘

Equation (3.25) is needed for estimating the parameters a and b
for given data {(yi,ti), i=1,2,...,n}, as will be seen in

Section 4.
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4., ESTIMATION OF MODEL PARAMETERS FROM FAILURE DATA

The basic models for the failure process and performance ;
measures were developed in Sections 2 and 3, respectively. 1In
oxder to use these models for software performance assessment, the i

only parameters to be specified are the total expected number of

errors to be detected, a, and the error detection rate per error,

b. In othur words, for given a and b, various useful quantities

can be computed from the relevant equations in Sections 2 and 3.
In general, a and b are not known for a specific software
system and are estimated from the available data generated during
” testing. However, that is not the only way to get a and b. One !
may be willing to extrapolate these values based on the data from 4
onc or more "similar" systems. Another method would be to use a
Bayesian approach, whereby knowledge about a and b can be expressed
as prior distributions and used for performance assessment. This
approach can also be used in conjunction with available data and
is specially useful when failure data are scarce or expensive to
collect. Formal analytical expressions for the Bayesian approach )
are currently under development and will be reported in a separate '
technical report. . |
The purpose of this section is to describe methods'for

estimating a and b from failure data. Use of these methods is

discussed in Sections 7 and 8 via failure data from operational

systems. Such data are generally available as

(i) total number of failures (crrors) in given time intervals;

and/or as

(ii) times between failarecs.
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Most of the available data is given in the form of number

> R

of failures in given time intervals. The data on time between

failures is very rare. Both of these cases are considered below.

Expressions are also derived for calculating the joint confidence

regions for a and b.

3




4,1 Estimation When Cumulative Failures are Given

We first consider the case when data are available as cumula-
tive number of failures in given time intervals. Suﬁpose
Y :¥ys-eesy, are the cumulative number of failures detected by times
tietyseant respectively. This can also be written as data
pairs [(yi,ti), i=1,2,...,n}. Thus the number of failures in
time interval (ti_l,ti) is (yi-yi_l) for i=1,2,3,...,r, where
t0=() and y0==0 . We will obtain the Maximum Likelihood Estimates
2 and b of a and b, respectively. To do this, we first write
the joint density and obtain the likelihood function, and then the
log ~likelihood function. Next, we take the partial derivatives of
the log-likelihood function with respect to a and b and equate

them to zero for maximization. The solutions of the resulting two

equations are the desired values (3,b).

Now, to get the joint density, we note that in our notations
Yy+¥peeeesy, are the observed values of N(tl),N(tz),...,N(tn),

respectively. Hence from Equation (3.25),

P[N(tl) =Yl [ N(tz) =Y2 " eee g N(tn) =yn}

n o Im(e,)-m(e, 1L 3l (nge)-m(e, L))
= 1 1 i-1 ‘e = i-1 (4.1)
i=1 (yi=y )¢
-bt,
where m(ti) =a(l-e 1) .
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It is well known that the likelihood function for the para-

\
meters is simply the joint density of YyeYoeeoos¥ o but now these
values are known constants. Substituting for m(ti) in Equation (4.1),

the likelihood function for (a,b) given the data (y,t) is

-bt. -bt., Yi™¥j-1 -bt

n i=-1 i
L(a,bly,£) = 1 {2l e ")) emall~e %) 40

i=1 (Y;=y;.q)¢

Taking the natural logarithm of Equation (4.2) yields:

n n -bti_l —bti
inL(a,bly,t)= £ (yi-yi_l)zna+— z (yi-yi“l)zn(e -e )
i=1 i=1
n —btn
-.2 zn(yi-yi-l).-a(l—e ) . (4.3)

i=1l

As mentioned above, the maximum likelihood estimates (mle's) are
those values of a and b which maximize 4nL(a,bly,t), i.e., which

satisfy (for brevity we write L to denote L(a,bly,t))

o4nL

3a - 0

and . (4.4)
o4nL _
b - ©

By taking the partial derivatives of Equation (4.3) and equating

them to zero, we obtain after some simplification (recall that

YO=0)I

=Y. (4.5)

and




n —
at_e = Z — . (4.6)

As can be easily seen, all the quantities in Equations (4.5)
and (4.6) are known except a and b. Since these equations do not
yield simple analytical forms, we must resort to numerical methods
for their solution. The resulting values of a and H; are the
mle's & and b, respectively.

It should be pointed cut that even though the mle's are the desired
values, it is often useful to study the log=likelihood surface as a
function of parameters a and b . For given data,‘a plot of the
log-likelihood surface can be obtained by solving Equation (4.3) for a
grid of values of a and b. If the plot is flat, it would indicate
a large variability associated with the mle's while a sharp sur-
face is an indicator of low variability. A surface with sharp rises
and falls might cause problems in numerical solution of Ejuations
(4.5) and (4.6), while a well-behaved surface would ensure rapid

~

"
convergence to the values a, b.

4.1.1 variance-covariance and confidence region for (a,b)

In addition to the mle's a, b, we generally want to quantify
the region in which the true values a, b might lie with a specified
degree of confidence. This is referred to as obtaining the 100(l-o)%
joint confidence region for (a,b). 1In general, it is not possible
to get the exact confidence rcgion (sec Reference 20) because
the true distribution of (E,ﬁ) is unknown. However, mle's

have a vory desirable proporty
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that they are asymptotically normally distributed, if the
data size is large. In practice a sample size of approximately
20 (n~20) should be satisfactory to use this property.

Also of grcat usefulness is the invariance property of the
mle's, i.e., a function of (a,b) can be estimated by using the
mle's a, b and this function will also be a mle. This will be
useful for estimating N(t), R(t), etc. |

Formally, as indicated above, the mle's are normally dis-

tributed for large n, i.e,,

(g)NN (:) ' zcov) as no o, (4.7)

The variance-covariance matrix represents

var (a) cov(a,b)

cov cov(b,a) Var(b)

and is given by

P




2 1
r = - B a__@_é (4.9) ’
aa 2 !
oa ;
t
: azan
Ly = Tpy =~ E Sashb (4.10)
2
! 9 4nkL
Iy X = - E (4.11)
» bb b2 E

i Taking the appropriate partial derivatives of Equation
(4.3) and substituting in Equations (4.9}, (4.10) and (4.11), we

obtain after some simplification, (recall that E[N(ti)]zln(ti)=

-bt,
a(l~e 1) .
n -bt, -bt,
1 i-1 i
r == T (e -e ) . (4.12)
aa a ;.
-btn
T = Tpa = tne ' (4.13)
and
n -bt . -bt, -bt
_ 2 i-1 2 i 2 n
| rbb-a[iil[(ti_l+ti_l)e (ti+ti)e -tne ]. (4.14)
1
E Substituting these expressions in Equation (4.8), we get the
1 variance-covariance matrix for (3,b). Thus the asymptotic distri-
bution of (a,b) is completely specified if (a,b) are known. However,
1 (a,b) are of course not known. Therefore, we use the estimates

(a,b) for (a,b) in Equations (4.7), (4.12), (4.13) and (4.14) to
get estimates of the paramcters of the asymptotic bivariate normal

distribution.
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Now, the correlation coefficient between a and b is esti-

mated as

cov(3,b)

q/;ar(a). Var(ﬁ)

pa'.i‘) = (4.15)

where Var(a), Var(ﬁ), Cov(é,ﬁ) are obtained from Equations (4.8)
to (4.11).
Finally, to obtain the 100(l-«)% confidence regicns for a

and b we use the following approximation (Reference 55)

AnL(3,bly,t) - nL(a,bly,t) = % xg,a
or 4nL(a,bly,t) = 4nL(3,bly,t) -% xg.o{ (4.16)

where LnL(%,ﬁlx,E) represents the value of the log-likelihood
function at a=2a znd b=b.

Substituting Equation (4.3) in Equation (4.16) we get

n n -bt. -bt,

=1
L (y;-Y._q)ina+ I (y.-y._,)in(e 1 e . )
j=1 % i-1 j=1 171 1
n --btn
- I zn(yi—yi_l):-a(l—e ) =¢C, (4.17)

i=1

where

2

C = 4nL(3,bly,t) -%— X300

(4.18)

Equation (4.17) defines a contour of the 100(l-«)% confidence
region. For given data, a, 5, end o, Equation (4.17) can be
solved for those values of a and b which satisfy it. (For com-

putational purposes, it is easicr to take values of 51(25) and

solve for the corresponding values of b.)

sy et

L8 g e S -t TR g TR T T T N OO,




'. M hd -,-.;—7:;5;,‘/‘_- . rrﬂ

{ 4.7 Estimation wWhen Times Between Failurcs Are Given
Now we consider the case when data is available in the form
of times betwecen individual failures. As mentioned earlier, such

data is not common and is rarely available.

Recall that X,,X,s....X_ denote the times between failures and

>

. .  Then the data is in the form x= (xl,xz,....xn) and

o]

-
Mo ™MD

[l

N

b
.

sn= .« The distribution of times between failures was discussed
i=1

in Section 3.5 and ic obtained from r?o‘uations (3.23) and (3.24), as

-b ¥ s, ~bs

i=1 * ~a(l-e
e

n
(sl,...,sn)=(ab)ne . )

¢sl,...,sn

The likelihood function for a, b, given s, is the same as above

and can be written as

n
-bh I s, -bs
n i=1 *  -a(l-e M)
L(a,bls) = (ab) -e e . (4.19)
Then the log (natural) likelihood is
n ~bs
inL(a,bls) = nina+ ninb~-b & si-a(l—e n) . (4.20)
i=1

To get the maximum likelihood estimates a, b, we take the partial

derivatives of Equation (4.20) and equate them to zero, i.e.,

a4nL _ o
sa 0 (4.21) . ;
and
34nl -
S5 0. (4.22)

These equations yield
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n = -
3= 1-e (4.23)

and

vls

I
Y
w
o

!
of
™
)]

N (4.24)

As in the first case, these equations do not yield simple
analytical solutions and have to be solved numerically. The solutions
of Equations (4.23) and (4.24) are the mle's a and b.

Regarding the asymptotic distribution of (3,%), recall that
(see Section 3.4), the joint density of Sl,...,Sn is improper.
Therefore, the asymptotic properties of mle's do not hold in
this case.

To obtain the 100(l-o)% confidence regions for (a,b) we

use the same approximation as was used in Section 4.1, viz.
P 1 .2
4nL(a,bls) - 4nL(a,bls) = 5 x5, . (4.25)

From Equations (4.20) and (4.25), a contour of the 100(l-uo)%

confidence region is obtained as

n -bsn
nfna+nidnb->b ¥ s, =-a(l-e ) =¢C , (4.26)
i=1 *
where
c = 4nL(3,bis) -3 x5, . (4.27)

As before, Equation (4.26) can be solved for given s

A

a, b, and o to get the desired conucrrs.
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5. GOODNESS~OF~-FFIT TEST

A non-homogeneous Poisson process model was proposed in
Section 2 to describe the software failure phenomenon. The mean ?
value function of this model was given in Equation (2.10). 1In i

this section we describe the Kolmogorov-Smirnov goodness-cf-fit

test (K-S Test) to check whether this model provides a good fit

ol e

to a given set of failure data.

Consider the case when the data are given as a sequence of

o ko . 2 0 il

software failure times _§==(sl,sz,...,sn) . We want to test

TR

< g

whether the events s are generated from a NHPP. Suppose that

0<s SSZS ssn are the random times at which the first n

1

events occur in a NHPP with unknown mean value function m(t) .

- A ity b
e il Rl S0 o ) MO it Ak 0 e Ll ¢ iz el n s i bife U

. We wish to test the simple hypothesis

H.,:m(t) = mo(t) for t>0,

0°
versus Hy : m(t) # my () for t>0. 1<
Ly
I
-b,t ;
Writing mo(t):zao(l-e ) . the hypothesis Ho can be written as 4
A
-bot
HO :m(t) = ao(l-e ) for t>0. (5.1) {

For testing purposes we need the joint conditional distribution

of the failure times. The following thecorem is useful in deriving

ALtk T

this distribution.

Theorem 5.1. Given that N(t)=n, the n failure times

0< Sl <= 82 <... %< Sn in the interval [0,t] are random variables
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whose joint conditional distribution is the same as the distribu-

tion of the order statistics of a random sample of size n £from

m(x)
m(t)

For proof of Theorem 5.1 see Cox and Lewis (Reference 11),

the distribution G(x) = for 0sx<t.

Corollary 5.1. Given that Sn=t , the (n-1) failure times

o< Sls S, €...% Sn-l have the same joint conditional distribution

as the order statistics of a random sample of size (n-1l) from the

m(x)
m(t) °

This Corollary easily follows from Theorem 5.1.

distribution G(x) =

Using Corollary 5.1, we reduce the hypothesis of Equation i

(5.1) to
mg, (%)
HO:G_(X) =G0(x) =m—o—(?7 for 0<x<¢t. (5.2)
For our case we have
-b x
1-e 0
H, : G(X) = ———r for O<x<t. (5.3)
0 -bot
l-e

Note that the expression in Equation (5.3) represents a truncated
exponential distribution.

We now consider the Kolmogorov-Smirnov (K-S) goodness-of-fit
test (References 53, 55). Given the values of a random
sample of size n-1, S)1Sy0eeesS 14 We define the sample cdf by
Hn_l(x) =%/(n-1), where k is the number of sample values <x.
Thus Hn_l(x) is a step function which is zero for x less than
s, . has a jump of 1/(n-1) at each s, » and is 1 for x grecater

than or equal to s That is,

n-1°
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0 s, X<8

1
Hn_l(X) = k/(n-1) , sk_le<Sk, k=2,3,...,n-1. (5.4)
1l R XZSn_l

Since Hn—l is a step function and G is monotonically increasing
and continuous, it suffices to test the absolute deviations at

the sample points Sy v k=1,2,...,n~-1, and then take the maximum
of these (n-1) values. The following procedure is used for

calculating the test statistic D. For each k=1,2,...,n-1, set

_ - _k_ k=1
k_max{!co(sk) =71 IGO(sk) n_ll}.

D
Then set

(5.5)

If the value of D calculated in Equation (5.5) is greater than

or equal to the critical value D . we reject the null

n-1l;o
hypothesis H0 that Sl's2""'sn-l follow Go(x); otherwise we
do not reject the null hypothesis. The critical values Dn-l;a
associated with the K-S test at a level of significance o are
available from statistical tables (see Reference 53, p. 661).

It should be noted that if the parameters of Go(x) are
estimated from the sample, the K-S test can be used but will give
extremely conservative results. To~achieve better results, the
level of significance needs to be adjusted. One approach suggested
by Al.en (Reference 2) is to test at the 5% level of significance and
use the critical value for the 20% level or test at the 1% level

and use the critical value for 10% level. We will usc this approach

in our analyses in Sections 7 and 8.
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Another use of the K-S test in our context is in developing
confidence limits for the true cdf G(x). For example, if we take
a random sample of size (n-1) and use it to construct the sample
cdf Hn_l(x), then we can be 100(l-¢)% confidént that the true
cdf G(x) does not deviate from Hn_l(x) by more than Dn-l;a'
That is, the 100(l-¢)% confidence limits for G(x) are given by

H _,(x)-D <G(x) <H _;(X)+D__,,_ - ' (5.6)

n-1l;a e

These limits are especially uszful in the case when the parameters
of Go(x) are to be estimated from the data. For this case the
null hypothesis HO will be rejected at a level of signifi;ance o
if one or more points of Go(x) fall outside the 100(l-¢)% con-

fidence limits given by Equation (5.6). Otherwise, it will not

be rejected.
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6. GENERAL METIHODOLOGY FOR SOFTWARE FAILURE DATA ANALYSIS

Sections 2 through 5 were devoted to the development of
models, measures, estimation techniques and a goodness-of-fit test. !
In this section we summarize the procecure for analyzing actual
software failure data. Analyses of failure data from two typical
systems are presented in Sections 7, 8 and 9.

The step by step procedure is shown in Figure 6.1 and des-

cribed below.

|

Step 1: Study the failure data. |

The model described in this report assumes that the failure !
data represents the data collected after the system has been 5
integratéd and the number of failures per unit time is statistically %
decreasing. If, however, this is not the case, the NHPP model of
Section 2 may not yield satisfactory results. rurthermore, adequate
amount of data must be available to get a satisfactory model.
A rule of thumb would be to have at least ten data points.
Step 2: Obtain estimates a and b of parameters a and b,

respectively.

Two methods are available depending upon the type of avail-
able data.

If the data is in the form of pairs (t,y), the maximum
likelihood estimates are obtained by simultaneously solving
Equations (4.5) and (4.6). [Section 4.1]

If the data is in the forw of times between failures, the
maximum likelihood estimates are obtained by simultaneously

solving Equations (4.23) and (4.24). [Section 4,2]
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Step 3: Obtain the fitted model.

The fitted model is obtained by first substituting a and b
from Step 2 for a and b, respectively, in Equation (2.10) to get
@m(t), and then substituting m(t) for m(t) in Equation (2.13).

At this stage, we have a fitted model based on the available
failure data.
step 4: Pexrform goodness~of-fit test.

Before procceding further, it is advisable to conduct the
Kolmogorov-Smirnov goodness-of-fit test to check the model fit.
This is done by following the procedure of Section 5. Specifically,
the observed value of D 1is obtained from Equation (5.5) and
compared with the critical value I%};a for a desired significance
level o. In general o=.05 or .10 is quite satisfactory.

If the model fits, we can move ahcad. However, if the model

does not fit, we have to collect additional data or seek a better,

more appropriate model. There is no easy answer to either how
much more data to collect or how to look for a better model.
Decisions on these issues are very much problem dependent.
Step 5: Compute confidence regions.

It is generally desirable to obtain 80%, 90%, 95% and 99% joint
confidence regions for the parameters a and b using the method dee-
cribed in Section 4, Such regions are given by Equation (4.17) for
cumulative failures data and by Eguation (4.26) for the times between
failures data.

Step 6: Obtain performance measurcs.

At this stage we can compute various guantitative mcasures

to assess the performance of the software system. Several useful

measures and expressions werc given in Section 3. Eguations (3.1),
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(3.3), (3.5), (3.6), (3.8) and (3.19) can be used for this purpose.

The specific measures to bc employed will vary from one application

to another., cConfidence bounds can also be obtained for
these measures to evaluate the degree cf uncertainty in the computed

values.

4
]
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7. ANALYSIS OF FATLURE DATA FROM A LARGE
SCALE SOI'MWAKE SYSTILM

The data to be analyzed in this section have been taken from
a large scale project reported in Thayer et al. (1976). This
project represents an initial delivery of a large command and
control software package written in JOVIAL/J4, (JOVIAL is a higher
order language generally used for pir Force Command and Control
applications). It consists of 115,346 total source statements and
249 routines. Some other characteristics of this project are

summarized in Table 7.1.

7.1 Failure Data

The failure data used for this study is taken from the
Software Problem Reports (SPR's) gencrated during the formal test-
ing phases of this project. The majority of software errors were
detected during Validation (Jun l-pug 12), Acceptance (Aug 13-Aug 24),
Integration (Aug 25-0Oct 26), and Operational Demonstration (Oct 27-
Nov 12) testing. However, operational data spanning a period
of approximately nine months was also available and is used for
comparison with the predicted values. The only time frame readily
available from the data was the calendar day. The data also con-
tain the mistakes by the operators and the "explanatory" errors,
i.e., corrections to make a change to a comment statement or those
errors for which a "fix" is not to a routinc. These explanatory

errors do or-do not indicate the type of change. Therefore, the

original data was restructurecd into four sets of data denoted by




TABLE 7.1

SOFTWARE PROJECT CHARACTERISTICS

Size (Total source statement) 115, 346
Number of routines 249
Language JOVIAL/J4

Formal Requirements

To function level

Co-~contractor

Yes
Subcontractor No
Operating Mode Batch
Formal Testing 24 Weeks
validation 10
Acceptance 2
Integration 10
Opcrational Demonstration 2

Y




PPN A o

DS1, DS2, DS3 and DS4 (Reference 63). The description and the
total numbcr of errors detected during the formal testing phases
for each data set are given in Table 7.2.

In this analysis the number of software errors detected
during formal testing is counted on a weekly basis. Also, for
each data sct the software errors detected during the first nine
weeks are eliminated due to the fact that we are interested in
analyzing the software failures over the period when they are
decreasing. The number of SPR's for the 15-week period for the

four cases (DS1 to DS4) are given in Table 7.3.
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7.2 Estimation of Parameters
The data for this project are in the form (tl,yl),(tz,yz),

""(tls'ylS)f i.e., as the number of failures in speccified time

intervals. Hence the estimates & and b are obtained by simul-
taneously solving Equations (4.5) and (4.6). Thus, by substituting

1
the data set DS1 in Ejuations (4.5) and (4.6) and solving, we get ;
4 = 1348, b = 0.124,

and the fitted mean value function is

m(t) = 1348(1-e'°'124t) , t>0.
This is also an estimate of the expected number of software failures
detected by time t. A plot of the actual cumulative number of

failures and the fitted values is given in Figure 7.1.
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7.3 Goodness-of-fit Test

cedure discussed in Section 5. Since the sample size is 15,
null hypothesis to be tested can be written as

=b.t.

l-e 071 _
HO:GO(ti) =——:?0—(‘15—) for i=1,2,....,15,
l-e
and the sample cdf as
0 ' x<:tl
H(x) = Yi/yls' ti-—l<x<ti' i=2,3,...,15.
1 ., X2t ¢

The computed values of H(x) for various ti are given in column 2

of Table 7.4.

Now we substitute bo

the value of Go(ti) for i=1,2,...,15. These values are given

The goodness-of-fit test is now conducted following the pro-

the

(7.1)

(7.2)

=b=0.124 in Equation (7.1l) and compute

in column 3 of Table 7.4. cColumns 4 and 5 of this table are the

guantities needed to find D = max {Dk} (see Equation (5.5)).
k

From

these columns we find the value of D to be 0.096 corresponding

to t.=9.
i

To find the critical value corresponding to sample size 15

and o= .05, we first note that the parameters had to be estimated

in this case. As mentioned in Section 5, for a situation like this

a suggested approach is to take o= .20 to get good results.

From

the statistical tables (Reference 53, p. 661). Dy, 2O=O.266.

The observed value D=0.096 is less than the critical value 0.266

and hence we accept the null hypotheses of Equation (7.1).

Thus




TABLE 7.4

DATA FOR KOLMOGOROV-SMIRNOV TEST
(DATA SET DS1)

? £, | B | 6ytE)) 16 (t; )1 (t,) | 1Go (£, )=H(t, )|

%

§ 1] 0.1784 0.1381 0.0403 0.1381

: 2 | 0.2979 | o0.2601 0.0378 0.0817
3 | 0.4587 | 0.3679 0.0908 0.0700
4 | 0.5000 | 0.4631 0.0369 0.0044

§ 5 | 0.5404 | 0.5472 0.0068 0.0472

i 6 | 0.6028 | 0.56215 0.0187 0.0811
7 | 0.6503 | 0.6872 0.0369 0.0844
8 | 0.7004 | 0.7452 0.0448 0.0949
9 | 0.7707 | 0.7964 0.0257 0.096
10 | 0.8269 | 0.8416 0.0147 0.0709
11 | 0.8506 | 0.8816 0.031 0.0547
12 | 0.8875 | 0.9169 0.0294 0.0663
13 | 0.9359 | 0.9481 0.0122 0.0606
14 | 0.9903 | 0.9757 0.0146 0.0398
15 | 1.0000 | 1.0000 0.0000 0.0097
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we conclude that at 5% level of significance the model

_ [1348(1-¢70- 1248 {e-1348(l—e—0‘ l24t)}

P{N(t)=y] =
Y.

can be considered to provide an adequate fit to data set DSI1.
To further check the adequacy of fit, we compute 95% con-
fidence bounds on G(ti)' From Equation (5.6), these bounds are

given by

H(t;) =Dyg. g5 < G(t;) <H(t;)+Dyg. g5 -

From the statistical tables, D,g. o5 = 0-366 and hence the 95%
confidence bounds are given by Ii(ti)i_0.366 . A plot of these

bounds and the fitted values are shown in Figure 7.2,
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7.4 con:idence Regilons for (a,b)

To get an appreciation of the variability in the estimated
values of a and b, we now construct confidence regions for
(a,b). Such regions are given by Equations (4.17) and (4.18).
For «= .05, the 95% joint confidence region will be the solution

of the following eguation:

15 15 -.124ti -—.l24ti__l
'E (yi-yi_l)lnl3484-.2 (yi-yi_l)ln(e -e )
i=1 i=1
15 -.124t15
- l):::l zn(yl—yl"l). - a(l-e ) =cC,
where
R 15 15 -.l24ti —.124ti_l
ann(,Big ) = 2 (yymyy en(1348) + E (y;my, ) an(e -e )
15 --.124t15
- ~t7 | - -
iil ln(yi 31—1)' 1348 (1l-e ) .
and |

a2 1 2 i
C = inL(a,bly,t) =5 X,. g5 * . T

Data (yl'tl)'(YZ'tz)""'(y15't15) were given in Table 7.2 and

2

x27 .05 = 0.103.

A plot of this region is shown in Figure 7.3. From this plot we
sec that c¢ven though the most likely values of a and b, based !
on the data, are a=1348, b=0.124, the true valucs can vary over

the entire region contained in the 95% contour. Values a= 1450,
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b=0.11 will be acceptable (with 95% confidence) and so will

a=1250, b=0.14. 50% and 75% confidence regions are also shown

in Figure 7.3 and can be similarly interpreted.
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7.5 Variance-Covariance Matrix

The variance-~covariance matrix is useful in quantifying the
variability in the estimated parameters and is obtained from
Equations (4.8), (4.12), (4.13) and (4.14) by substituting
a=a=1348 ,b==£==0.124, and the actual data values from Table 7.3.

For data set DS1, we get

N 2368 -0.2071

cov

™
il

-0.2071 5.554 x 10~°

From this we have

Standard Deviation (a) = ,/Var (a) = 48.66
Standard Deviation (b) = Jvar(ﬂ) = 0.00745
Correlation coefficient (a,b) = 33 5
’
= =0-2071 = -0.571,

J (2368) (5.554 x 1075
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7.6 Nunber of Remaining Errors
One useful quantity is the
errors in the system after some t

from Equation (3.5) as

~
~ =b
as-e

-

E{N(t)}

1348e

i

or E{N(t)}

A plot of this quantity is
this value decreases with time.
number of remaining errors which
all the errors were found during
be noted that this assumption is
only and, in general, this may no

It would also be interestin

estimated number of remaining

ime t . This value is obtained

t

-0.124t

shown in Figure 7.4. As expected,
Also shown is a plot of the "actual"
is based on the assumption that

36 weeks of operation. It should
made for illustration purposes

t be the case.

g to compute confidence bounds on

Eﬁ(t). Such bounds can be easily computed as follows.

Let f(a,b) denote EN(t).

53, 55) that 100(l-«)% confidenc

Then, it is well known (References

e bounds for f(a,b) are given by

(B@mp)rt, 5. Y V(E@b)]. (7.3)

where
(% . (3f 3f of
v(f(a,b)) = (aa ab)zcov da \ (7.4)
f
b a=a ,b=ﬁ

and tn-z-a/z is the upper o/2 percentage point of the t~distribution

with (n-2) degrees of freedom.
The 90% confidence limits £

comput.ed from the above eguations
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or E{N(t)] for data sct DSl arc

and are plotted in Figure 7.4.
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7.7 Software Reliability

Software reliability is a commonly used performance measure
to assess how reliable the system is at various times. To compute

software reliability, we use E~uation (3.19) and get

_a(e-bs__e—b(s+x))

R (x1s) = e
X]lSk_l
This gives the reliability after time x starting from the current

time s . For example, starting from s=15, the reliability after

0.04 weeks, i.e., at s+x=15.04, is

- -(.124)15  -(.124)(15.04)
R(0.041s=15) = ¢ 1348(e -e )

or R(15.04) = 0.354.

To see how reliability varies with time, a plot of R(x1s=15) is
shown in Figure 7.5.

To obtain confidence bounds on reliability, we use a pro-
cedure similar to the one used for getting bounds on E{N(t)]. ﬂ
Let g(a,b) represent R(xis=15). Then the confidence bounds

are given by
(G@d)rt, 5. Y V(G @b)], (7.5)

where

v§am) = (52 3

da ab> cov I (7.6)

e i

~
a=a
~

b=b
90% confidence bounds computed from these equations for the given

data arc shown in Figure 7.5. |
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7.8 Ssummary of Analyses for DS1 to DS4

Analyses similar to those for data set DS1 were undertaken

oy

for data sets DS2, DS3 and DS4 of Table 7.3. A summary of the

results is given in Table 7.5.
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TABLE 7.5

A SUMMARY OF DATA ANALYSES

Data Set
Quantity DS1 DS2 DS3 DS4
a 1348 1823 3958 3446
b 0.124 0.112 0.0768 0.0771
——
/ var(a) 48.7 62.2 147.3 136.6
~/—;c—1r
Var (b) 0.00745 0.00643 0.00460 0.00492
B -0.571 -0.648 -0.856 -0.855
a,b
Estimated Number of Remain-
ing Errors at the end of 209 338 1212 1050
Operational Demonstration
Number of Errors Detected
During Nine Months of 198 263 540 475
Operation
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8. ANALYSIS OF FAILURE DATA FROM NAVAL
TACTICAL DATA SYSTEM (NTDS)

Jelinski and Moranda (Reference 31) first analyzed some software

failure data from the U.S. Navy Fleect Computer Programming Center.
Since then this data set has been used by several investigators
for model validation purposes. In this section we analyze the
same data set to see how good the NHPP model is in modelling these
failures. In the next section we will compare the results from
the NHPP model with those of Jelinski and Moranda.

The data set was extracted from information about errors in
the development of software for the real-time, multi-computer com-
plex which forms the core of the Naval Tactical Data System (NTDS).
The NTDS software concisted of some 38 different project schedules.
Each module was supposed to follow three stages: the production
(or development) phase, the test phase, and the user phase. Many
of the "trouble reports" or "software anomaly reports” were gen-
erated whenever a system-level symptom of a deficiency was noted
by operators or users. A proper trace back to the exact cause ir
software of this symptom was done by personnel familiar with the
entire system. However, Jelinski and Moranda felt that it
was better to analyze the data from isolated modules than from the

total system, due to the fact that many of the modules did not

evolve in the fashion indicated. One of the larger modules, denoted

by A-module, had the desired pattern. The times (in days) between

failures for this module are shown in Table 8.1l. Twenty-six

softwarce errors were found during the production phase and five
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TABLE 8.1
SOFTWARE FAILURE DATA TROM NTDS
4 ERROR NO. TIME BETWEEN FAILURES CUMULATIVE TIME
; Xk days 5, =z X0 days
3 Production ;
1 (Checkout) Phase
4 1 9 9 i
2 12 21
3 11 32
; 3 7 43
6 2 45 !
i 7 5 50 :
y 8 8 58
o 5 63 :
10 7 70 !
11 1 71 |
12 6 77 '
13 1 78 |
¢ 14 9 87 1
; 15 4 91
1 16 1 92 i
17 3 95
18 3 98
19 6 104
20 1 105
21 11 116
22 33 149 1
23 7 156
24 91 247
25 2 249
26 1 250
Test Phase E
27 87 337
28 47 384
29 12 396 f
30 9 405 i
31 135 540 E
‘ }
] User Phase i
32 258 798 i
¥ Test P11a§S f&
33 16 814 :
34 35 849
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additional errors during the test phase. The last error was found
on 4 Jan 1971. One crror was observed during the user phase on

20 Sept 1971 and two more errors (5 Oct 1971, 10 Nov 1971) during
the test phase. This indicates that a re-work of the module had
taken place after the user error was found. A more detailed de-

scription of the NTDS software can be found in Jelinski and

Moranda.

Data Analyses

The data in this case is available as times between software
failures and hence the method described in Section 4.2 will be used

for estimation of parameters. We consider the first 26 data points
26
in Table 8.1, for which n=26 and s, = T x, =250 days.
' 26 k=1 k
To get an appreciation of the likelihood function associated

with this data set, the log-likelihood from Ejuation (4.20) is
plotted in Figure 8.1l. We see that the surface rises sharply
along the b-axis and is relatively flat along the a-axis.

The maximum of this surface is obtained by solving Eguations
(4.23) and (4.24). Substituting the appropriate values from

Table 8.1 in Equations (4.23) and (4.24) we get

2?6 = 1o o~b(250) (8.1)

and

=b (250)

£2 = a(250)-e -b(250) . (8.2)

Solving Equations (8.1) and (8.2), numerically, we get
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b = 0.00579

as the mle's for a and b, respectively. The fitted mean value

function is

M(t) = 33.99(1-e 0-00579t, (8.3)

and is shown in Figure 8.2, along with the actual data (determination

of the confidence bounds will be discussed later).

Goodness-of-fit test

We now perform the Kolmogorov-Smirnov goodness-of~fit test
to check the adequacy of the fitted model. Now, using Corollary 5.1
and the results in Section 5, we conduct the test based on 26-1= 25

points. The hypothesis, from Equation (5.2), is

-b x
-G(x)—-—kﬁ—jL—* fo 0<x<250 (8.4)
0% = ~b, (250) r SX= ’ .

l-e

H

and the sample cdf is

0 . X<s

1
H(x) = { k/25 , Sy 1 £X <5, k=2,3,...,25. (8.5)
1, X2s,¢g

The values of Sy and H(sk) are given in Table 8.2. To compute

GO(sk) for various Sy values, we replace bo by b in Equation (8.4)

et e e e
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TABLE 8.2

KO LMOGOROV-SMIRNOV TEST
FOR THE N1DS DATA SET

ks | H(sp) | Go(s) | 16 (s )-H(s )b [ 164 (s )=H(sy_4) 1

1{ 9 |0.04 |0.0664 0.0264 0.0664

2| 21 | 0.08 |[0.1497 0.0697 0.1097

3| 32 [ 0.12 ]o.2211 0.1011 0.1411

4| 36 | 0.16 | 0.2460 0.0860 0.1260

5| 43 | 0.20 | 0.2882 0.0882 0.1282

6| 45 | 0.24 | 0.2999 0.0599 0.0999

7| 50 | 0.28 | 0.3286 0.0486 0.0886

8| 58 | 0.32 | 0.3730 0.0530 0.0930

9! 63 | 0.36 | 0.399% 0.0396 0.0796

10{ 70 | 0.40 | 0.4357 0.0357 0.0757
11| 71 | 0.44 | 0.4407 0.0007 0.0407

12 { 77 | 0.48  0.4703 0.0097 0.0303

13| 78 | 0.52 ; 0.4751 0.0449 0.0049 ;
14| 87 | 0.56 | 0.5174 0.0426 0.0026

15| 91 | 0.60 | 0.5355 0.0645 0.0245

16 | 92 | 0.64 | 0.5399 0.1001 0.0601

17 { 95 | 0.68 | 0.5532 0.1268 0.0868 ;
18 | 98 | 0.72 | 0.5661 0.1539 0.1139

19 |104 | 0.76 | 0.5915 0.1685 0.1285

20 105 ! 0.80 | 0.5956 0.2044 0.1644 '
21 [116 | 0.84 | 0.6395 0.2005 0.1605 1
22 {149 | 0.88 | 0.7557 0.1243 0.0843
23 1156 | 0.92 | 0.7776 0.1424 0..1024
24 {247 | 0.96 | 0.9946 0.0346 0.0746 5
25 |249 | 1.00 [ 0.9982 0.0018 0.0382 3




and ob*tain Column 4 of Table 8.2. Entries in columns 5§ and 6 are
@easily obtained from Columns 3 and 4. Now, from Equations (5.5)

and (8.4)

D = max{lGO(sk)'-H(sk)l,IGo(Sk)"H(Sk_l)]~
k .

In other words, D is the largest entry in Columns 5 or 6 and is

seen to be
D = 0.2044 .

To test at «¢=.05, we use a critical value corresponding to o =.20
as discussed in Section 5.

From statistical tables,

I.)25;0.2 = 0.208.

Since D<:D25_0 , ¢+ We accept the null hypothesis, Ho,at 5% level
of significance.
The 100(l-a)% confidence limits for G{X) can now be calculated

from Equation (5.6). For example, for o =0.05 we have p =0.264 ,

25:;0.05

so that the lower and upper confidence bounds are

L(x) max{H(x) - 0.264,0])

and

]

U(x) min{H(x) + 0.264,1} ,

where H(x) is given by Equation (8.5). The 95% bounds for G(x) ,

along with Go(x), are shown in Figure 8.3. We see that the fitted

model seccis to be adequate.
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Having established that the model provides a good fit, var-
ious performance measures of interest can be obtained by substitu-
ting the estimated values of a and b in the appropriate eguations

of Section 3.

The estimated mean value function, as given in Equation 8.3, is

'0’00579t). A plot of m(t) and the actual number

m(t) = 33.99(1-3
of errors detected during the production period for this case was
given in Figure 8.2, Also shown were the 90% confidence bounds
for the N(t) process as computed from Egquation (3.1).

The 100(1l-o)% confidence regions for a and b are obtained
from Equations (4.26) and (4.27) following a procedure similar to
the one detailed in Section 7. These are shown in Figure 8.4 for
a=0.05, 0.25, and 0.50.

Next, an estimate of the expected number of errors remaining

in the software system at t =250 days, given that N({250) =26, is

obtained from LEquation (3.8) as
E{N(250) IN(250)=26] = 33.99-26 = 7.99 .

As indicated in Table 8.1, eight errors were found during usage

of the system, subsegquent to the production phase. The excellent
match between the predicted and actual values is coincidental and
in general the NHPP model is not expected to porform this well.

Finally, software reliability, R (x1250) , can be com-

X37'%26
puted from Equation (3.19). For example, the reliability values

after x=5, 10, 20 and 30 days are 0.796, 0.638, 0.417 and 0.280,

respectively. Thus the probability that the system will operate
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without any failures for 30 additional days in 0.26. As seen
from the data in Table 8.1, the system did operate without any

failures for 87 days subsequent to failure number 26.
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9. A COMPARISON OF NTDS DATA ANALYSES USING
THE NHPP AND THE DE-EUTROPHICATION MODELS

As mentioned in Section 8, the NTDS data has been analyzed
previously by several investigators for model validation purposes.
The first such analysis was undertaken by Jelinski and Moranda

(Reference 31) using a De-Eutrophication model., 1In this section

we provide a limited comparison of the results of analyses using

the NHPP and the De-Eutrophication models.

For the De~Eutrophication process, the cdf of Xk’ the time
between the (k-1)st and the kth failures, is given by
P (%) = Fyigqr O9)
= 1o (Rt Dex oy g0, (9.1)

where N is the number of errors in the system at time zero and o
is the error occurrence rate per error.
The likelihood function for N and ¢ for given data

Xy Xngase is
l' 2' Ixn

n

n f (%)
woy N+l

L(NI(OIE)

1

- (N=-Xk+1)p:
(N=-k+1)pe x
1

n
=3

k

and the log=~likelihood is

(N—k+l)cpxk . (9.2)

n n
InL(N,@lx) =nine+ T 4n(N-k+l) - T

1




The maximum likelihocod estimates of N and ¢ are the values
N and @, respectively, that maximize Lqguation (9.2). Taking the
partial derivatives of Equation (9.2) and equating them to zero,

the likelihcod eguations which the mle's must satisfy are

n n 1
¢ I %X = L T (9.3)
k=1 k k=1 N-k+1
n
nfeo = E_ (N-k+1l)x, . (9.4)
k=1

For the first 26 points in Table 8.1, the solutions of Egua-
tions (9.3) and (9.4) are N=31.2 and ¢=0.00685. 1In other words,
the initial number of errors is estimated to be 31.2 and the failure
rate is estimated to be 0.00685 errors per error day. There-
fore, the estimated number of errors remaining at the end of the
production phase (i.e., at t=250) is N-26=5.2.

The estimates of a and b at t =250, as obtained in
Section 8, were &=33.99 and b=0,00579 .

It can be easily shown that for the De-Eutrophication process

the expected number of errors detected by time t is given by

M (t) = N(1-e %% . (9.5)
Substituting for N and ¢,
fo(v, = 31.2(1 - o 0-00685t, (9.6)

For the N(t) process (NHPP model), the expected number of errors

by time t, as given in Equation (8.3), is

E[N(t)] = m(t) = 33.99(1 - 0-00579%) (9.7)
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Equations (9.6) and (9.7) represent the same physical gquantity.
pPlots of ﬁN(t) and &(t) are shown in Figure 9.1. The actual
nuicber of errors detected by time ¢ is also shown. A comparison
of the plots shows that results for the NIIPP and De-Eutrophication
processes are guite close.

The mean time to the kth failure (after the (k-1l)st failure)

is the reciprocal of the parameter (N~k+l)¢ in Equation (9.1), i.e..

—_———~—-l p—
E(x ) = (N-ktl)o k=1,2,..., (9.8)
or
1
1 ]
E[X.]) = 137735%71)0.00685 ° (9.9)

The values for k=1,2,...,31 were computed and are shown in
Table 9.1. As was pointed out in Section 4.2, the MTTF for the J

N(t) process does not exist due to the fact that the distribution

of Xk is improper. For the sake of comparison, however, we use :

3
J
i
4
§
4
1
2
P

the inverse transformation of the mean value function to get the

estimate of time to kth failure as follows.

- Lon(1-x/3)
b

Zn(1-k/33.99) , k=1,2,....

N S
0.00579

Hence, we get
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De-Eutrophication Models

9.1

Comparison of Rosults Based on the NHPP and the

ACTUAL FAILURE TIME

ESTIMATED FATILURE TIME (DAYS),‘Q

ERROR NO. (DAYS) (Based on 26 observations)
NHPP Jelinski-Moranda
(xk) Model
1 9 5.156 4.679
2 12 .5.315 4.834
3 11 5.483 S
4 4 5.663 5.177
5 7 5.855 5.367
6 2 6.061 5.572
7 [ 6.281 5.793
8 8 6.518 6.032
9 S 6.774 6.292
10 7 7.05 6.576
11 1 7.351 6.886
12 6 7.677 7.227
13 1 8.035 7.603
14 9 8.427 8.021
15 4 8.859 8.488
16 1 9,338 9.011
17 3 9.872 9.604
18 3 10.471 10.281
19 6 11.147 11.06
20 l 11.916 11.966
21 11 12,799 13.034
22 33 13.824 14.312
23 7 15.028 15.868
24 91 16.461 17.803
25 2 18.197 20.276
26 1 20.342 23.546
27 87 23.062 28.074
28 47 26.624 34,758
29 12 31.489 45.62
30 9 38.539 66.357
31 135 49.686 121.655

a= 34

31.2

Total No. of Ervors (34)

Failure Rate

b=0,00579

. 00685

I

No. of Remaining Lrrors (8)

26 =

26 = 5.2
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The values of %, for k=1,2,...,31 were computed from Equation

k
(9.10) and are given in Table 9.1. As a criterion for comparing
the results from the two models, we choose the sums of squares of
the differences between the actual values Xy and the estimated

values X%, for k=1,2,...,26 and for k=27,28,...,31, i.e., we

k
use
26 5
Fit = £ (xk—fck) .
k=1
and
.31 . 2
Prediction = © (% =X, ) .
x=27 K K
We get Fit =7169 and Prediction = 8220 for the De-Eutrophication
process. For the N(t) process we get Fit =7180 and

Prediction = 13034. For this criterion, the De-Eutrophication pro-
cess gives better results than the N(t) process. However, NHPP
gives better results when the criterion is the number of errors
remaining at t =250 days. These results are summarized in
Table 9.1.

Next we compare the accuracy of estimates (ﬁl,%) with that
of (‘é,f:) by obtaining joint confidence regions for (N,®) and (a,b).

The joint 100(l-g)% confidence regions for (a,b) are given
by Equations (4.26) and (4.27) and were shown in Figure 8.4 for
«=.05, .25 and .50.

To obtain the 100(l-«)% joint confidence regions for N
and ¢, we use the same result that was used to get the confidence

regions for (a,b), viz.
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lnL(&,&lg)-inL(N,olg) = %x. . (9.11)

o

Substituting in Egquation (9.11) the expression for £nL(N,¢lx)

from Equation (9.2), we get

n n
ning+ ¥ in{n-k+l) - I (N--k+l)cpxk = C, {9.12)
k=1 k=1
where
a o~ 1l 2
c = 4nL(N,p}x) ——2-7(2;0 . (9.13)

Equation (9.12) defines a joint 100(l-a)% confidence region for N
and ¢ . Plots of such regions for «=.05, .25 and .50 are shown
in Figure 9.2. A comparison of these plots with those in Figure 8.4
shows that for tne same «, the range of N is somewhat smaller than
that of a while the range of ¢ is larger than that of b.

Next we compare the reliability predictions based on the two

models. The reliability function after n errors is

R

n+l(x)::l-—P[(n+l)st error will occur by time xIn errors

have occurred] , (9.14)

For the De~Eutrophication process of Equation (9.1}, Equation (9.14)

becomes

-~ (N-n)eox

Rop1(¥) = e (9.15)
Since after n=26, N=31.2, $=0.00685, we have
& (x) = e~ (31.2-26) (0.00685)x
27
or
ﬁ27(x) - e-0.0356x. (5.16)
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For the NHPP, the reliability function from Equation (3.19) is

Ry g (xIs) =e

n+l n

Since after n=26, a=233.99, b=0.00579, we get

X _ -(0.00579) (250) =(0.00579) (250+x )
R, s (x1250) = e 33.99{e -e }
271826
orxr
) _ = (.00579)250,, _-.00579x
R, g (x1250) =e 33.99-e (l-e )
27'52¢
ox
R, o (x1250) = o=7-993 ) _=0.00579x, (9. 17)
271526

Plots of §27(x) and R (x1250) for various values

X371856

of x are shown in Figure 9.3. Also shown are the reliability

functions f232(x) and R (x1540) computed from the data for

%321831
the first 31 failures given in Table 9.1l. The reliability after
n=31 is monotonically higher than that after n=26. BAlso, the
predictions from NHPP are somewhat more conservative than those
from the De-~Eutrophication process. This is what would be expected
because of the larger and more accurate estimates of the number of

errors remaining in the system when the NIHPP model is employed.
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10. CONCLUSIONS

In this report we proposed a simple but very versatile mcdel
for analyzing failures in large scale software systems. The

model was justified on the basis of reasonable and realistic

assumptions about the nature of the failure phenomenon. Specific-
ally, the model (Section 2) is based on a non-homogeneous Poisson
process (NHPP) with a mean value function m(t) = a(l - e—bt).

The choice of the form of this mean value function was also
justified.

The parameters of this model are a and b, where a is the
expected number of failures that will be encountered if the
system were to be used for a long time and b is the error detec-
tion rate per error.

Several useful quantitative measures were proposed (Section
3) for assessing software performance. These measures are the
number of failures by time t, number of errors remaining in the
system at t, software reliability, etc. Models were also de-~
veloped for computing these measures from actual failure data.

A methodology for obtaining the maximum likelihood estimates
of a and b was presented (Section 4) for the cases when the data
is given as failure counts or as times between failures. A
goodness~of-fit test based on the Kolmogorov-Smirnov statistic

was devcloped (Section 5) to check the adequacy cf the fitted

model.
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Failure data from two DOD systcms were analyzed (Scctions
7 and 8) using the methodology presented here (Section 6). Re-

sults of the analyses and a limited comparative study (Section

9) indicate that the NHPP model secms to do quite well in ex-

plaining the failure occurrence phenomenon. Applications of

this model to several other data sets, not reported here, also
yielded satisfactory results.

The model developed in this report is applicable after the
system error occurrence rate begins to decline. At present, all
available models share this restriction. Efforts are under way
to develop a 3-parameter NHPP model which will be applicable
during the integration phase. Also, the parameters cannot be
estimated without available data. Work is continuing on the

development of a Bayesian methodology which will permit deter-

mination of a and b when limited data is available.
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APPENDIX A

DESCRIPTION OF SOFTWARE FAILURE MODELS

A.l Stochastic Models for Times Between Software Failures

One of the earliest studies to develop a model for software

reliability was undertaken by Jelinski and Moranda (Reference 31).

N ol e

They developed a model for the time between software failures,
making the assumption of a uniform failure rate. In other words,
the software error detection rate at any time is assumed to be
proportional to the current error content (the number of remaining
errors) of the tested program. It is also assumed that one error
is removed/eliminated whenever a software failure occurs. If N

is the initial number of errors in the system, the numbef of errors
remaining after (i-1l) errors are removed will be {(N-(i-1)]}. If o
is the proportionality constant, the hazard rate or the error

detection rate between the (i-~1l)st and the ith failures is

z(x;) = o[N=(i-1)] .

Then the Probability Density Function (pdf) of X, the time
between the (i-l)st and the ith failures, is
. _ - [N=(i-1)]x,

f(xi) = @[N=-(i-1)] - e .
This constitutes the basic model of the so-called De~Eutrophication
process. Statistical inference about the unknown parameters, N
and ¢, was discussed by Lipow (Reference 35) who obtained the
maximum likelihood estimates and the variance-covariance matrix
for N and ¢ . Forman and Singpurwalla (Reference 21) also proposed

a method based on solving the difference equations in N and o.
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Moranda (Refcerence 45) modifiecd the De-Futrophication process

by assuming the tailurc rate to decrease geometrically rather than

decreasing in constant steps. He further incorporatcd the class

of non~-fatal errors, while the failure rates of successive errors

form a geometric progression whose initial term is D and whose

ratio is k. This is a superposition of a gecmetric De-Eutrophication
process and a Poisson process with parameter 6. The model can

now describe the burn-in phase by a De~Eutrophication process as

well as the stcady state by a Poisson process. For a combination
Geometric De-Futrophication and Poisson Model, the failure rate

between the (i-1l)st and the ith failures is given by

z(xi) = kl—lD+e .

Schick and Wolverton (Reference 58) developed a model whose
hazard rate depends on the testing time as well as the number of
remaining errors. They assumed that the hazard rate is a linear

function of testing time, i.e.,
z(x;) = @[N=-(i-1)]x;

where N and ¢ represent the initial error content and a pro-

portionality constant, respectively. It turns out that the distri-

bution of the time between the (i-1)st and the ith failures is a

Rayleigh distribution with parameter ¢[N—(i-1)]/2. The estimates

of N and ¢ can be obtained by the method of maximum likelihood.
Schick and Wolverton (Reference 59) postulated another model in

which the hazard rate is a parabolic function, instead of a linear
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function, of testing time Xy . The hazard function for this model

is

z(xi) = [N~ (i-1)] (-ax§+bxi+ c) , a,b,c>0.

This yields an increasing number of errors while a debugging effort
is in full force, then reaches a maximum, and finally declines as
the number of remaining errors is drastically reduced.

A Bayesian approach was taken by Littlewood and Verrall
(Reference 36) to develop a software reliability growth model. The

underlying distribution of the time between the (i-1l)st and the

ith failures is an exponential distributicn with rate v ; i.e.,

-AX.
£(x;IA) = Ae 1.

The failure rate ) is treated as a random variable with a Gamma
distribution with shape parameter o and scale parameter (i), an
increasing function of i. The function y§(i) is assumed to be

known although it may differ from program to program. Assuming a }
uniform prior distribution of «, one can construct a data-dependent

pdf of the time to next failure. Thus, the pdf of X1 for given

n observations X;,X,,...,X is given by i'
ny" 1
N S R YERRTE B X1tV (D) X 1+t (n) n+l : ;
Iy + log{— "5y} i
where |
n i
Y = 121 log[;%{y%y]-
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It was shown that the reliability improves if y (i) increases more
j rapidly with i than a linear function of i. A goodness-of-

; fit test was also presented and its use shown by choosing V(i)

to be a polynomial in 1i.

Most of the stochastic models treat the software system as

R P SR

a black-box. Littlewood (Reference 37) studied a model in which
he incroporated the internal structure of the software system. He
assumed that the software was composed of several sub-programs

which worked in continuous time by Markov switching among them-

selves and that the failures occurred according to a Poisson pro-
cess. The failures in the overall program were then shown to
follow, asymptotically, a Poisson process whose failure 'rate can

be computed from the failure rates of the individual structural com-
1 ponents. By considering the distribution of the cost associated
with failures, it was shown by Littlewood (Reference 38) that the

] distribution of the total vector cost due to failures of subprograms

during (O,t) is, asymptotically, multivariate normal.

A key assumption made in most of these models is that the
errors are removed with certainty when detected. However, as i

pointed out in Miyamoto (Reference 43) and Thayer, et al. (Refer-
ence 67), in practice errors are not always corrected when detected.
The above models do not provide an explicit solution for such
situations.

To overcome this limitation, Goel and Okumoto (References

26, 28, 30) developed an Imperfect Decbugging Model (IDM). 1In

this model, the number of errors in the system at time t, X(t),

Eae ey
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is treated as a Markov process whose transition probabilities

e

are governed by the probability of imperfect debugging. Times

between the transitions of X(t) are taken to be exponentially

I e R e

distributed with rates dependent on the current error content of
the system. Expressions are derived for performance measures such
as the distributibn of time to a completely debugged system,
distribution of the number of remaining errors and software reli-
ability. Okumoto and Goel (Reference 48) discussed methods for
obtaining the m'ximum likelihood estimates and confidence regions
for the parameters N (the initial error content), q (probability
of imperfect debugging), and \ (failure rate per error).

The reliability models based on time between software failures

are summarized in Table A.1l.

e«
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A.2 Stochastic Models Based on Number of Failures

One of the earliest models in this category was proposed by

Shooman (Reference 61). He analyzed the actual error data from func-

tional tests after different debugging times, and used the history of

these errors to specify the error detection rate function, p (7).
Hence, the total number of errors removed during t months of

debugging is taken to be

.
e(1) = SO p (x)dx .

If we assume that the total number of errors in the program, ET'
is constant, and that no new errors are added during debugging,
then e(w)-*ET/Lr as T~ o, where In is the number of instructions
in the program. Then the number of errors remaining at time r

can be expressed as
e (7) = ET/IT-e('r) .

Assuming that the software failures occur due to the occasional
traversing of a portion of the program which has one or more errors,
the hazard rate in an operational phase for software which has

been debugged for 1 months must be proportional to the number of

errors remaining at time T, i,e.,
z(t) = Ker(f)

.
= K[ET/IT-SO p (x)dx]

where K is an arbitrary constant. Since z(t) is constant over

the operational time t, the reliability is simply
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~[Ke (7)1t
R(t) = e r

and the mean time to failure is
MITF = 1/ [Ke_(7)].

A similar approach was taken by Musa (Reference 46) to develop an
execution time model. If we denote the number of inherent errors
in the program by No and the net number of errors corrected during

the execution time 1 by 1j(7), then the number of errors remain-

ing at time 171 is
M(T) = Ny= (7).

He assumed that (i) the errors in the program are independent of

each other and are distributed at any time with a constant average
occurrence rate per instruction throughout the program, (il) various
types of instructions are reasonably well mixed, and (iii) the
execution time between failures is large compared to average instruc-

tion execution time. The hazard rate of the errors is then given

by

KEN(T)

N
—
5
-%
~
I

KEN, = KEN{(T)

0

where K 1s the error exposure ratio and f is the linecer exocution
frequency. Furthermore, assuwing that the error correction rate
Q%ﬁ}l is equal to the error exposure rate, z(7), he obtaincd the

hazard rate
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z(7) = KEN, eKET |

Hence for execution time r', projected from 1, the reliability

is given by

R(T,7') = e-z(T)T'.

This is the basic execution time model. The model was then gen-
eralized by introducing an error reduction factor, B, ana a testing
compression factor, C. The relationship between the execution
time and calendar time was also investigated by incorporating the
limitations on the availability of resources (failure identification
personnel, failure correction personnel, and computer time).

Taking a different approach, Schneidewind (Reference 60) studied

the number of errors detected during a time interval and the collection

of error counts over a series of time intervals, by assuming that

the failure process is a non-homogeneous Poisson process with an

exponentially decaying intensity function

d(i) = aePi, @,8>0, i=1,2,....
As an extension to his earlier models, Moranda (Reference 45)
developed a geometric-Poisson model assuming that the number . Nj
of errors occurring in the ith interval is governed by a Poisson

distribution with parameter ki1,
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A.3 Availability Models

As mentioned earlier, an operational software system is sub-~
ject to random failures caused by software errors in the system.
The maintenance/debugging activity is then undertaken whenever a
software failure occurs. The system goes through a maintenance

phase to remove the cause of failure and becomes operational as

soon as the maintenance activity is over. Trivedi and Shooman

(Reference 68) developed an availability model by considering the

sequence of operational and maintenance (up and down) phases of the
software system. The distribution of times in both states was
taken to be exponential with a state dependent parameter.

A generalized model for the operational and maintenance phases
was developed by Okumoto and Goel (References 49, 50). In this
model, the time to remove an error is assumed to follow an exponential
distribution with a rate dependent on the current error content of
the system. The sequence of operational and maintenance states
of the software system is formulated as a semi-Markov process and
expressions are oObtained for system availability and other per-
formance measures. They also developed a nomogram to explore the
trade-offs between the expected time to a specified number of
remaining errors, which determines the software operaticnal per-
formance, and the manpower requirements to achieve the desired

objective.
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A.4 Combinatorial Models

A.4.1 cCapture-recapture sampling

Mills (Reference 42) formulated the problem of estimating the
nunber of errors in a program by using a technique callea caprture-
recapture sampling. In this technique, a program containing an unknown
number n; of indigenous errors is deliberately 'modified' by
seeding a set of known errors, ng . These errors could be then
discovered in successive tests, each of which is considered a trial.

Then, the joint probability of finding X_ indigenous errors and

I
Xg seeded errors is given by a hypergeometric distribution.

Lipow (Reference 34) modified this problem by taking into consid-
eration the probability, q, of finding an error (of either kind) in
any test of the software. Then, for N statistically indepcndent

tests the probability of finding’ xI indigenous and X, seeded errors

is given by

PN(XI=xI ¢ X =X i q.nI.ns)
- ( N >.qx1+xs.(1_q)N-xI-xs xI xs
xI+xs (nI+-ns)
xI+xs

The maximum likelihood estimates of q and n, are given by

I

a _XitXs
a N

and
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Basin (Reference 5) suggested a somewhat different procedure,

the so-called two-state edit procedure, where one programmer searches
for defects and records n, errors out of a total of N unknown
indigenous erxors. A second programmer edits the program inde-
pendently and finds, say, r erxors. The two lists of errors are
then compared. The probability that the same k errors are found

by the two programmers is given by a hypergeometric distribution.

A.4.2 Input data domain considerations.

Software reliability assessment based on program structure has
been proposed by Nelson (Reference 47). The reliability of a computer
program here is defined as the probability of the program being
correct on any given run. Data sets are used to execute the pro-
gram structure. Each input data set proceeds through a sequence
of segments, called a logical path, with a branch to a new segment
taking place at the exit of each segment. The input data space, E,
is partitioned into a small number of disjoint subsets, zj '
j=1,2,...,k, to produce the operational protile probability aistri-
bution, P(zj). If a program is executed a total of n times and
fj failures are observed out of nj runs using points from 2. ,
then an estimate of program operational usage reliability is given

by
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Further, assuming that the test cases (i.e., n executions of the
program) are identically proportionzal to P(zj), an estimate of

the observed (or assessed) reliability is given by

- 1

R2 = l-;?fj .
The techniques for developing a set of test cases which serve

to accomplish a certain ohjective, e.g. assurance that each and

every structural element would be exercised at least once during

the execution of the program with the complete set of test cases,

was discussed by Brown and Lipow (Reference 8). They used this

technique to show its applicability on two fairly small programs.
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A.5 Model Comparisons

Very few studies have been reported that compare the per-
formance of various models. A comprehensive study for this objective
was undertaken by Sukert (References 63, 64). In this study he
analyzed the data from a large command and control system by using
several software failure models. As a result of this study, he
pointed out the limitations and difficulties in using these models.

A limited comparison of the models from the quality assurance
viewpoint has been reported by Sukert and Goel (Reference 65). A
description and comparison o% models has been given by Yau and

MacGregor (Reference 71).

Schick and Wolverton (Reference 59) compared various models
and indicated that the model they had developed (Reference 58),
secems to perform better than others. Recently Angus, Schafer and
Sukert (Reference 3) and Schafer, et al. (Reference 57) completed
a comparative investigation of several models from the validation
point of view. They analyzed several failure data sets and pointed
out the difficulties of parametric estimation and other limitations

of these models.

105

T T T VIR )

|

i




£ . G e .

g

N TR s

MISSION
of
Rome Avr Development Center

. RADC plans and executes mmch development, test and

selected acquisition programs %ppon.t of Command, Controf
Communications and lu«tuu.gme (C°1) activities. Technical

and engineening support within areas of technical competence

7 mavdcd«toESDP&ong‘uu (P08} and other ESD
elements. The principal mission aneas are
communications, electromagnetic guidance and control, sur-
veillance 0f ground and aerospace objects, wtuugencc data
couwuon and handling, information dystem technology,

modpheric propagation, solid state sciences, microwave
plwu‘.u and electronic neliability, maintainability and
compatibility.

ol
-
k-
-
; .T\
A
B
3
E
.
s i
]




